

Terminology

Confidence Interval (CI)	A range of values that have a stated probability (the <i>degree of confidence</i>) of containing the actual value of a population parameter.			
Point Estimator	A statistic used as the value for a population parameter	Z* (Z _{crit}) Values		
	the value of the statistic is the point estimate	Confidence	Z*	
	the value of the statistic is the point estimate.	90%	1.645	
Critical Value (z*, z _{erit})	The Z-value that represents a stated margin of error.	95%	1.96	
		98%	2.33	
		99%	2.58	

Calculating a CI

The CI calculation is calculated from a point estimate and a margin of error:

CI = point estimate ± margin of error

CI for Population Proportions

• Confidence Interval for a proportion *p* at a given confidence level is:

$$CI = \hat{p} \pm z^* \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

CI for Population Means

When σ is known

$$CI = \bar{x} \pm z^* \frac{\sigma}{\sqrt{n}}$$

 $\bar{\mathbf{x}}$ - Sample mean; \mathbf{z}^* - critical z-value; σ - population std. dev.; \mathbf{n} - sample size

When σ is not known

$$CI = \overline{x} \pm t^* \frac{s_x}{\sqrt{n}}$$

 $\overline{\mathbf{x}}$ - Sample mean; \mathbf{t}^* - critical T-value; s_x - sample std. dev.; \mathbf{n} - sample size

Margin of Error and Standard Error

- ▷ Margin of error half the size of the CI; that is, the "±" part of the CI equations.
- ▷ **Standard error** The margin of error without the t^* or z^* element.

Validity requirementsThese equations are valid if:Random data10% rule $n \le 0.1N$ Large counts $n \cdot \hat{p} \ge 10$ $n(1 - \hat{p}) \ge 10$

	Calculator	Note		
O thi wi	On your graphing calculator, three functions are associated with confidence intervals:			
Pr	oportions			
	1-PropZInt	z-interval		
м	eans			
	TInterval	t-interval		
	ZInterval	z-interval		
Ge	eneral			
	InvT. InvNorm	find <i>t</i> *. z*		

Choosing Sample Size

To choose the sample size needed to achieve a particular margin of error, solve the margin of error equation for n.

Population proportions

Population Mean (σ known)

Population Mean (σ unknown)

 $n = \left(\frac{t^* s_X}{ME}\right)^2$

$$n = \hat{p} (1 - \hat{p}) \left(\frac{z^*}{ME}\right)^2 \qquad \qquad n = \left(\frac{z^*\sigma}{ME}\right)^2$$

- ▷ If you are missing \hat{p} for population proportion intervals, assume $\hat{p} = 0.5$; this is a conservative estimate.
- ▷ Round the resulting number up to the next higher integer.

Interpreting Confidence Interval and Level

The following are the interpretation of the confidence interval and the confidence level of the following study:

A random sample of 3,000 U.S. adults were asked if they had ever seen a live dinosaur; of the sample, 16% responded "yes." The 95% confidence interval for this was determined to be (.143, .197).

The interpretations of this are as follows:

Confidence Interval

Generic	"We are% confident that the interval from to captures the true proportion of"			
Example	We are 95% confident that the interval from .143 to .197 captures the true proportion of adults who have seen a live dinosaur.			
Confidence Level				
Generic	"If many samples of <u>sample size</u> are taken, the resulting confidence intervals would capture the true proportion of <u>test question</u> for about <u>%</u> of those samples."			
Example	nany samples of 3,000 US adults were taken, the resulting confidence intervals ould capture the true proportion of adults who have seen a live dinosaur for out 95% of those samples.			